未开启屏蔽访客功能,允许调试
建议选择太阳能+热泵的模式。热泵技术是近年来在全世界倍受关注的新能源技术。人们所熟悉的“泵”是一种可以提高位能的机械设备,比如水泵主要是将水从低位抽到高位。而“热泵”是一种能从自然界的空气、水或土壤中获取低位热能,经过电能做功,提供可被人们所用的高位热能的装置。工作原理热泵系统的工作原理与制冷系统的工作原理是一致的。要搞清楚热泵的工作原理,首先要懂得制冷系统的工作原理。制冷系统(压缩式制冷)一般由四部分组成:压缩机、冷凝器、节流阀、蒸发器。其工作过程为:低温低压的液态制冷剂(例如氟利昂),首先在蒸发器(例如空调室内机)里从低温热源(例如常温空气)吸热并气化成低压蒸气。然后制冷剂气体在压缩机内压缩成高温高压的蒸气,该高温高压气体在冷凝器内被低温热源(例如冷却水)冷却凝结成高压液体。再经节流元件(毛细管、热力膨胀阀、电子膨胀阀等)节流成低温低压液态制冷剂。如此就完成一个制冷循环。太阳能是人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源,代表性的产物是太阳能热水器.
1 前言 地热能是地球内部贮存的热能,它包括地球深层由地球本身放射性元素衰变产生的热能及地球浅层由接收太阳能而产生的热能。前者以地下热水和水蒸气的形式出现,温度较高,主要用于发电、供暖等生产生活目的,其技术已基本成熟,欧美国家有很多用于发电,我国则多用来直接供热,这种地热能品位较高,但受地理环境及开采技术与成本的影响因而受限较大;后者由太阳能转换而来,蕴藏在地球表面浅层的土壤中,温度较低,但开采成本和技术相对也低,且不受地理环境的影响, 特别适合于建筑物的供暖与制冷,因而受到了暖通空调及节能行业越来越多的关注。 地球表面是一座巨大的天然太阳能集热器和储热库。到达地球表面的太阳能相当于全世界能源消耗量的2000倍,只是由于太阳能能流密度低,地球表面的温度变化大,使得对这部分热能的直接利用困难较多。但实际上,温度受天气变化影响较大的部分主要集中在地表面至地下10m之间的区域内,从10m深度再往下, 大地温度就稳定在当地全年的平均气温上了。我国大部分地区这个温度都在15℃左右,如果把这样的温度搬运到地面上来稍做处理,就可成为很好的空调系统,这就是目前浅层地热能利用的主要方式。 浅层地热能利用通常需借助于热泵,它是一项新兴绿色节能技术。在冬天它以大地为低温位热源,从大地中提取热量,经过地面上热泵的转换,提高温位向房屋供暖;在夏天则以大地为高温位热源,将房屋内的热量输送到大地土壤中。由于地下温度十分稳定且很接近房屋居住所需的温度,因此,相对于以大气环境为热源的热泵和燃煤、燃油的供暖供冷系统,以大地为提取热量或排放热量的热源的热泵效率大大提高,同时还减少了燃烧产物的排放和制冷剂的用量,对环保十分有利。 从大地土壤中提取热量用于房屋的供暖早在20世纪30年代就已提出,只是由于长期以来石化燃料价格低廉,供应充足,它才没有得到重视,导致其进展缓慢。到 20世纪80年代以后,由于全球性能源紧张和环境污染日趋严峻,这项技术才逐渐受到青睐,目前已趋于成熟,正在欧洲、北美和日本得到推广应用。在我国则还处于实验研究阶段,目前国内几家科研院所和高校正在开展这方面的研究,要进入商业化的实际工程应用尚需进行长期不懈的努力。 2 浅层地热能利用系统及其特点 浅层地热能属于低品位热能,直接使用达不到一般要求的温度,通常需设置一套热泵,组成地热能热泵利用系统,将地下热能的温度进行一定的提高或降低。因此,地热能利用系统主要由热泵、地热换热器及用户端组成,而其中地热换热器是关键。 2.1 地热能热泵 地热能热泵的工作原理与通常的热泵相同,都是由压缩机、蒸发器、冷凝器、节流装置组成。通过消耗一部分高品质能源即电能,吸收低温物体的热能排放给高温物体,实现供热和制冷的目的,其热泵示意图如图1所示。只不过,通常的热泵以大气环境为其吸热或放热的热源,大气温度的剧烈变化导致常规的热泵效率低下, 不仅消耗大量高质能源,而且恶化了周围的环境温度,使得夏天更热,冬天更冷。 与常规热泵不同,浅层地热能热泵以近地表层土壤为其吸收热量或排放热量的热源。在冬天,地热能热泵从土壤中吸取热量,供给热泵的蒸发器,经压缩机提高温度后,传到热泵的冷凝器,向房屋供热;在夏天,地热能热泵通过其蒸发器从房屋内吸收热量,经压缩机、冷凝器而排放到土壤中。因为土壤温度全年基本维持不变, 热泵系统的操作可以设计得十分精确,使得工作稳定而高效。 地热能热泵可以很小,单个住户只需一套热泵;也可以很大,商业上可采用多套或多级热泵,唯一的要求是需要足够的土地,使热交换能够充分进行,最节约的方式是在建筑施工的起始阶段就安装地热能热泵,这样,房屋结构就不会阻碍热泵与地下热源的联系。 地热能热泵以大地为吸收或排放热量的热源,在有地下水源的地方,不需要专门的地下换热器,可以直接抽取地下水,经过去除杂质的处理后,根据供暖或制冷的目的,送给热泵的蒸发器或冷凝器,完成热量交换后灌到地下或排放到别的地方。在没有水源的地方,热泵要与土壤交换热量,就需要设置专门的地下换热器。所以,在结构上它与常规热泵最大的不同就是需要一套地热换热器。 2.2 地热换热器 地热换热器的性能与当地土壤的性能密切相关,它设计得合理与否直接影响地热利用效率和投资成本,是地热泵成功应用的前提,也是当前浅层地热利用技术推广的难点。 浅层地热能热泵所用地热换热器就是在地面下埋设的封闭管道路,这些管路通常由高密度聚氯乙烯或聚丁烯塑料管组成,用泵将换热介质送入这些地下管道与地下土壤进行热量交换,然后到地面与热泵进行换热,换热介质通常为水的盐溶液,封闭在管路系统,在地面上的热泵与地下换热器之间循环流动,完成换热任务. 地下管道埋设方式有水平式和垂直式两种形式。水平埋管式通常浅层埋设,工程量大而开挖技术要求不高,初投资低于竖直埋管式;缺点是占地面积大,温度稳定性也较差,现在已很少采用。竖直埋管式工程量小,占地面积少,恒温效果好,维护费用少,适合于用地紧张的城市;缺点是技术要求较高,初投资较大。 竖直埋管式地热换热器目前应用较多,发展较快。它是在地面下竖直钻孔,在孔内埋入换热管,换热管的形式又有两种:U型管式(见图2)和套管式,目前以U型管应用较多。地下钻孔的孔径一般为100~150mm,孔间距和深度取决于土壤的热性质和气象条件并随地理位置而变。孔深一般为100~300m,孔间距为 4~10m,钻孔总长度由建筑面积的大小而定,一般是每平米建筑面积钻孔长度1m左右。 每一竖直钻孔内可放入一组或两组U型塑料管,管径25~35mm,塑料管下端用U型接头接好,形成一个U型封闭管路。然后将钻孔与管道之间的空间填埋夯实,填埋材料可以采用当地土壤,也可以选用与当地土壤性质接近的混凝土。各钻孔内,管道之间的连接方式有串联和并联两种形式。 串联形式就是换热介质依次流过每个钻孔内的U型换热管路之后再到地面与热泵的制冷剂进行热量交换。并联形式就是换热介质同时分配到地下各个钻孔内的换热管路,与土壤交换热量后,同时流地面进入地面上的热泵与制冷剂交换热量,这两种方式各有利弊。 串联系统的优点是:单一流程和管径;管道的线性长度有较高的热性能;系统的空气和废渣易于排除。缺点是:需要较大的流体体积和较多的抗冻剂;管道费用和安装费用较高;长度压降特性限制了系统的能力。 并联系统的优点是:管径较小因而管道费用较少;抗冻剂用量较少;安装费用较低。缺点是:一定要保证系统的空气和废渣的排除;在保证等长度环路下,每个并联线路之间流量要保持平衡。 2.3 经济性及环保性 地热能热泵的能源利用效率比通常的热泵提高45%~70%,通常每消耗1kW的功率可得到4kW的热量或冷量。地热能热泵的投资收期依赖于热泵系统的大小、运行时间的长短和当地的能源价格,因设置地热能热泵而多投资的费用的收期通常为5年左右,总的投资收期为10~14年。 由于以大地土壤中的低品位热能为低温热源,所以,在为住宅供暖制冷时,仅需驱动热泵运行的电力供应,而不需要别的热能,不需要锅炉来燃烧燃料供应热能。同时,由于土壤温度基本恒定,因此热泵的运行效率较通常热泵的效率高,而且无论是CO2的排放还是制冷剂的使用都比常规的热泵为少,对环境的破坏和污染就相应减少。jh
一般太阳能热水器在晴天会有充足的热水,但连续阴雨天热水就明显不足。而太阳能热泵热水器具有以下优点:(1)全天候工作:太阳能热泵热水器可一年四季、全天候工作,不受阴雨天或夜晚影响,持续40℃~60℃生活热水。(2)节能、环保:可节约大量用于低温热水生产的电能和化石燃料,且无燃烧、无排烟废弃物,使用无公害的循环工质,可称为绿色环保产品。(3)运行成本低:在春、夏、秋季阳光较好时,太阳能热泵热水器的运行费用比常规太阳热水器要高,但在阴雨天和夜然而太阳能热泵热水器可以实现白天不启动热泵系统,仅在晚上需要热水器的时候视水温的情况再启动空气源热泵,可以让系统充分吸收太阳能,实现全年节能90%的效果。(4)运行安全:采用小型全封闭式压缩机,使用安全的家用电源,无需大电流的电气接入,水、电完全分离,无漏电危险;无燃烧,不产生废气,兔除“气爆”、“煤气中毒”的隐患。(5)安装方便,寿命长:整个系统采用分体式结构,安装方便,且太阳能集热/蒸发器安装位置几乎不受限制,承压式贮热水箱的配管系统也很简单;制冷管路无腐蚀和冬季“防冻”问题,系统寿命可达10年以上。(6)使用舒适:采用立式承压保温水箱和横向散射入水孔,减少了冷、热水掺混,有利于水箱内的温度分层,提高了热水有效利用率且不会出现忽冷、忽热的现象。(7)易于与建筑实现一体化:依靠合理的设计,太阳能集热/蒸发器可以与建筑实现一体化的结合,既可丰富建筑外观;又可增强维护结构的保温性能。
太空能热泵,是指根据逆卡诺原理,通过把太阳能和空气能经内耦合系统,共同作为蒸发器采集热源的热泵系统,故称为“太阳能—空气能内耦合热泵系统”,简称“太空能热泵”
工作原理:
制冷剂被压缩机加压,成为高温高压气体,进入冷凝器,冷凝液化放热,成为液体,同时将烘干房空气加热,从而达到提高烘干房温度的目的。通过热风的形式使物料中的水分汽化蒸发,蒸发出来的水蒸气由排湿系统排走而达到烘干物料的目的。
排湿系统有热收装置,收的热量用于加热新风,可节约70%的新风预热能耗。
热泵烘干机是用少量的电能驱动热泵压缩机做功,通过热泵装置中的构成部件蒸发器、压缩机、冷凝器和膨胀阀,促使工质不断完成蒸发、压缩、冷凝、节流、蒸发热力的循环过程,从而将空气环境中的大量分散的太阳能热量转移至烘干房烘干所需的热量。
热泵烘干机的每日维护内容:
1、设备每天开机前,要检查电源线是否安全牢固,厂房电压是否稳定。
2、设备的过滤网要每天清洗,集尘箱中的物料碎屑要清空,保证设备的通风良好,才能使设备发挥出最好的烘干效果。
3、在烘干机开启后的1个小时内,要检测一下设备在各个阶段,运行参数是否在正常范围之内。
热泵烘干机的每月维护内容:
1、每月要对热泵烘干机进行一次大的清洗,先打开后箱盖,使用比较柔软的棉布,对设备内的各个部件擦拭清洗。
2、将烘干机的翅片换热器进行一次全面的清洗,这样可以保证设备的换热效果达到最佳状态。
3、在设备的风扇、轴承等一些经常活动的部件加入适量的润滑油,可以减少部件间的磨损,增加寿命。
4、对设备上一些经常活动、容易脱落的零部件,进行一些加固处理,例如电气线路、箱门的合页、管道的连接处等等。
5、检查一下烘干机上皮带的使用情况,适当的进行调整,以保证皮带轮处于最佳的工作状态。
太阳能热水器工作原理图1.冷水通过管道进入太阳能热水器内,经过集热板,集热板能收集太阳能,将太阳能转化为热能,然后把冷水加热。由于冷水的比重比热水的比重大,热水会自动往上升,然后形成一个循环动力,水就在集热板那逐渐升温,达到一定温度后就能进入储热水箱,需要热水的时候就能供应热水。加热图2.其实太阳能热水器的原理主要包括了以下2个原理:(1)水循环原理,就是水会自动流动,这是利用冷水比热水密度大,冷水下沉,热水上升,形成自然对流循环、使水箱中的水逐渐变热,达到设定的水温为止。当太阳强度不足以满足循环需要的时候,可以在水循环闭路加一水泵,实现强制循环。(2)集热器吸热原理:太阳能热水器的集热器表面,有一特殊的涂层,此涂层对太阳能可见光范围具有很大的吸收率,吸收为热以后,集热器的散热热辐射波长在长波范围,该涂层对长波的发射率很低,这样就有效地保留了太阳能的热量。再通过这种热量将冷水逐渐加热为热水。太阳能集热管下面详细说说这种集热器上的集热管,集热管实际像一个被拉长的热水壶内胆,由一大一小两支玻璃管套合而成,外层为透明,内层为涂有光谱选择性的吸收涂层,内外管之间抽成直空,它是太阳能热水器的核心,用于最大限度地吸收太阳光辐射后的热能;由于真空玻璃管是圆形的,具有对太阳广源自然跟踪的特点,再加上反光板的反射原理,使玻璃管四面受光面面俱到,集热效果时间更长,水温更高,即使高寒地区一年四季也可正常运行。
太阳能辅助热泵通常是指作为太阳能热利用系统辅助装置的热泵系统,包括独立辅助热泵和以太阳辐射热能作为蒸发器热源的热泵。这类热泵多数以供热为主,涉及建筑采暖、生活热水供应以及工业用热等应用领域,对太阳能集热温度要求不高,而且具有灵活多样的系统形式、合理的经济技术性能和良好的商业实用化前景。
直膨式太阳能热泵就是热泵的蒸发器里的制冷剂直接吸收太阳能热,蒸发器和太阳能集热器是同一个换热器。该热泵热水器可以弥补传统太阳能热水器在冬季无太阳气候下供热不足的缺陷。因为其供热主要是依据空气源热泵的工作原理来实现供热的。